COVID-19-related stress, exercise, and oral health-related quality of life among community-dwelling older adults who participated in the CHEER Iwamizawa project, Japan | Scientific Reports – Nature.com

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Scientific Reports volume 12, Article number: 20347 (2022)
Metrics details
This study examined the association between coronavirus disease 2019 (COVID-19)-related stress, exercise habits, and oral health-related quality of life (OHRQoL) in a sample of 215 community-dwelling older adults in Japan (57 men, 158 women; Mage = 74.2 years, SD = 6.0). Data were collected during wellness checkups in October 2020 and included participants’ demographic characteristics, measures of instrumental activities of daily living and depressive tendencies, number of teeth, oral hypofunction, OHRQoL, COVID-19-related stress, and exercise habits. Four mutually exclusive groups were created, using the presence or absence of COVID-19-related stress and lack of exercise habits as risk factors for poor OHRQoL (no COVID-19-related stress and no lack of exercise, COVID-19-related stress only, lack of exercise habits only, and both COVID-19-related stress and lack of exercise habits). Poisson regression with robust standard errors provided the prevalence ratio for poor OHRQoL. The presence of both COVID-19-related stress and lack of exercise habits (adjusted prevalence ratio: 2.20, 95% CI: 1.31– 3.69) was associated with poor OHRQoL. The results indicate that COVID-19-related stress and exercise habits should be considered when designing oral health and public health initiatives.
In recent times, the prevalence of mental health problems has increased, owing to the coronavirus disease 2019 (COVID-19) pandemic1,2,3. Mobility restrictions and lifestyle changes due to the pandemic have been found to cause stress4,5. In addition, older adults have been reported to have a higher risk of death and exacerbation of COVID-19, making them more anxious and fearful about contracting COVID-19 than younger people6,7.
OHRQoL is a multidimensional construct that includes a subjective evaluation of the individual’s oral health, functional well-being, emotional well-being, expectations and satisfaction with care, and sense of self, which is an integral part of general health and well-being8. In the aftermath of the Great East Japan Earthquake, an increase in subjective toothache9 and a decrease in OHRQoL were reported by disaster victims10, suggesting that life-threatening crises can have a significant negative impact on oral and mental health. The COVID-19 pandemic has been predicted to have a similar impact on OHRQoL. Thus, anxiety about COVID-19 has been associated with worsening daytime teeth clenching11, periodontal disease12, and poor OHRQoL13.
In contrast, exercise has been found to enhance the quality of life (QoL) by reducing psychological distress14 and eliciting favorable effects on mental health and chronic pain control15,16. Although no study has examined the relationship between exercise and OHRQoL thus far, exercise may affect OHRQoL by alleviating psychological distress. The COVID-19 pandemic has led to a decrease in physical activity among community-dwelling older adults17. Previous research has shown that a reduction in mobility is a risk factor for increased functional disability in the future18.
Furthermore, poor OHRQoL has been reportedly related to general frailty and lower QoL19,20,21,22, thus indicating the need to maintain good subjective oral health. Therefore, the factors associated with OHRQoL should be considered when designing oral healthcare and public health programs.
We hypothesized that the stress caused by mobility restrictions and lifestyle changes during the COVID-19 pandemic (COVID-19-related stress; CS) and lack of exercise habits (LEH) would be risk factors for poor OHRQoL and that the presence of both would be associated with poor OHRQoL. Therefore, this cross-sectional study aimed to determine the association between CS, LEH, and OHRQoL in community-dwelling older adults.
A total of 232 participants were included in the study, representing 0.7% of the citizens aged over 60 years in Iwamizawa City (see Supplemental Fig. S1). Of these, ten participants who gave incomplete answers to the questionnaire and seven who did not wish to undergo dental examinations and oral function tests were excluded. Thus, the total number of participants eligible for analysis was 215 (57 men and 158 women; Mage = 74.2 years, SD = 6.0).
Ninety-seven participants (45.1%) were classified as having CS. No significant differences were found in their demographic characteristics and other variables according to the presence or absence of CS (Table 1).
Fifty-nine participants (27.4%) were classified as having LEH. The score on the Japan Science and Technology Agency Index of Competence (JST-IC) was significantly lower in the group with LEH. No significant differences were found in age, medical history, oral function, or rates of patients with oral hypofunction(Table 2).
Figure 1 shows the percentages of participants across the four groups according to the presence or absence of risk factors for poor OHRQoL. Group 1 had 86 participants (40.0%), Group 2 had 32 (14.9%), Group 3 had 70 (32.5%), and Group 4 had 27 (12.6%). No significant differences were found in the rate of oral hypofunction and other variables in each group (Table 3).
Classification of the four groups of risk of poor OHRQoL. The percentages of participants across the four groups according to the presence or absence of risk factors for poor OHRQoL are shown.
The prevalence ratios for poor OHRQoL based on the presence of CS and LEH are shown in Supplemental Tables S1 and S2 (available online). The presence of CS alone was not associated with poor OHRQoL (adjusted prevalence ratio [aPR]: 1.24, 95% CI: 0.85–1.81), whereas the presence of LEH alone showed a significant association with poor OHRQoL (aPR: 1.68, 95% CI: 1.12–2.51). Regarding the risk of poor OHRQoL, Group 4 (aPR: 2.20, 95% CI: 1.31–3.69) showed a significant association with poor OHRQoL, while Group 2 and Group 3 did not (Table 4). In addition, lower age (aPR: 0.97, 95% CI: 0.93 − 0.99), depressive tendencies (aPR: 2.45, 95% CI: 1.60–3.77), and fewer current teeth (aPR: 0.95, 95% CI: 0.93–0.97) were significantly associated with poor OHRQoL. Since the Lagrange multiplier test results for overdispersion with the null hypothesis that the auxiliary parameter of the negative binomial distribution is zero were not significant (Z = -6.19, p = 1.000), the Poisson regression with robust standard errors was considered reasonable.
The results of this cross-sectional study supported our hypothesis that the coexistence of stress, related to mobility restrictions and lifestyle changes during the COVID-19 pandemic, and LEH is associated with poor OHRQoL. Several studies have investigated the presence of subjective toothache during the COVID-19 pandemic through questionnaires23 and examined OHRQoL in patients who visited the dentist for acute symptoms13. However, no study has focused on the coexistence of CS and LEH in daily life. OHRQoL may decline because of organic factors such as decreased number of teeth and periodontal disease24,25 and functional factors such as occlusal force and masticatory function24,26, as well as psychological and social factors8. Furthermore, an association has been reported between OHRQoL and general health in older adults27. Our results suggest the need to consider not only the oral health status but also the psychosocial background, including stress and exercise habits of older adults, when designing oral healthcare and public health programs.
The COVID-19 pandemic has been reported to exacerbate feelings of depressed mood and helplessness in community-dwelling older people6. Anxiety and psychological distress due to COVID-19 were also found to be associated with poor OHRQoL13. However, in this study, CS alone was not associated with poor OHRQoL. One reason for the discrepancy between our results and those of previous studies may be that Iwamizawa City, where the survey was conducted, is a provincial city, and its environment was less susceptible to CS than large cities. Moreover, the number of COVID-19 cases in Iwamizawa City was zero in October when this survey was conducted28. Additionally, the participants voluntarily participated in health checkups; thus, many of them may have been active and health-conscious. Furthermore, the subjects’ behavior may be influenced by their awareness of being in a study under observation29. Therefore, we created four groups defined by the presence or absence of CS and LEH and examined their association with poor OHRQoL in detail. Subsequently, Poisson regression with robust standard errors showed that the coexistence of CS and LEH was associated with poor OHRQoL. Furthermore, LEH alone was associated with poor OHRQoL; however, in Group 2, where CS was not present, LEH was not a risk factor for poor OHRQoL, suggesting that the coexistence of CS with LEH is an important factor for poor OHRQoL.
This is the first study to report an association between OHRQoL and LEH, although the underlying mechanism remains unclear. However, reports have shown that exercise can improve depressive and anxiety symptoms30, representing a potential alternative to antidepressant treatment in patients with depression31. The possible neurobiological mechanisms include an increase in brain-derived neurotrophic factors32 and the modulation of autonomic nervous system functions33. These findings suggest that exercise may affect OHRQoL by reducing stress. Exercise has been reported to prevent a decline in psychological well-being during the COVID-19 pandemic34. In this study, CS was possibly not alleviated due to LEH, and Group 4 showed an association with poor OHRQoL. In terms of the risk of poor OHRQoL, neither Group 2 nor Group 3 showed a significant association with poor OHRQoL in the Poisson regression with robust standard errors. In Group 2, CS was not present and thus did not need to be relieved by exercise; however, in Group 3, exercise habits were present, and CS was relieved by exercise. This may explain why no association with poor OHRQoL was found in these two groups. Additionally, the fact that CS alone was not associated with poor OHRQoL may have been influenced by the fact that of the 97 participants (Group 3 + Group 4) who experienced CS, 70 were in Group 3 and had exercise habits.
The Poisson regression with robust standard errors revealed an association between Group 4 and poor OHRQoL. In contrast, a simple comparison of the four groups found no difference in the proportion of patients with oral hypofunction. This suggests that the subjective assessment of OHRQoL by the General Oral Health Assessment Index (GOHAI) did not match the objective assessment of oral hypofunction. Previous studies have also reported discrepancies between subjective and objective assessments of masticatory function, which are associated with depressive symptoms, instrumental activities of daily living (IADL), and physical functions35. Another study reported that subjective xerostomia was associated with psychogenic factors and IADL, whereas objectively assessed hyposalivation was associated with being female and the use of gastrointestinal drugs36. From the above, it may be concluded that a decline in subjective oral health is related to IADL, physical functions, and psychological factors such as depressive symptoms. Additionally, in this study, the JST-IC scores were not associated with poor OHRQoL. This may be because many participants came to the wellness checkup site voluntarily, and their IADL and physical functions were relatively well-maintained. Therefore, in this study, poor OHRQoL may have been associated more with psychogenic factors, such as CS, than with IADL or physical functions.
Furthermore, the Poisson regression showed that lower age, depressive tendencies, and fewer current teeth were associated with poor OHRQoL, consistent with the results of previous studies24,27. However, the generalization and application of this study’s results should be conducted with care. All citizens aged ≥ 60 years were encouraged to participate in this survey, and individuals voluntarily participated in the wellness checkups. In other words, these participants may have had a high motivation for preserving their health, and many of them may have had high oral, physical, and cognitive functions. In terms of age group, more participants in this study were over 70 years old than the participants in the Survey of Dental Diseases37, a survey covering all of Japan (Supplemental Table S3).Nevertheless, the participants in our study had a higher mean JST-IC score than the standard value of 9.538 and a low percentage of oral hypofunction (26.5%) compared with previous studies by Kugimiya et al. (43.6%)39 and Shimazaki et al. (62.9%)40. Therefore, sample bias must be considered when discussing the results, and random sampling with lower sample bias should be considered in the future. Additionally, given the rapid increase in the number of older adults over the age of 8041, considering these populations will be important for future studies. Furthermore, Iwamizawa City, the site of the survey, is a regional city. Previous studies have reported lower stress levels in rural areas than in large cities, where the cases of infection and deaths due to COVID-19 have been higher, owing to the high population density42. Iwamizawa City may, thus, have been an area with less CS. Finally, although a Japanese version of the Fear of COVID-19 Scale43 for assessing CS has now been developed and validated44, this version did not exist at the time this study began. Therefore, based on reports that mobility restrictions and lifestyle changes due to the COVID-19 pandemic are factors that induce stress4, we assessed CS by asking, “Do you feel stressed by the lifestyle changes and restrictions on going out due to the COVID-19 pandemic?” Furthermore, regarding the lack of exercise, a review32 that summarized the effects of exercise on anxiety symptoms in non-psychiatric patients highlighted the variations in the type and frequency of exercises in several studies. In our study, the type and intensity of exercise were not specified, but the frequency was set to at least once a week, based on a report suggesting that exercising once or twice a week is associated with lower mortality45.
This study has several limitations. First, since this was a cross-sectional study, the possibility of reverse causality cannot be ruled out. Second, although all citizens aged ≥ 60 years were invited to participate in the survey, the rate of participation was low because of the COVID-19 pandemic. Therefore, the sample size was not large enough to consider all the factors associated with OHRQoL, such as income and utilization of dental services19,27.
In conclusion, we found that the coexistence of CS and LEH was associated with poor OHRQoL in community-dwelling older adults. Thus, CS and LEH may be associated with oral health in older adults independent of organic factors such as reduced number of teeth or functional factors such as occlusal force. Furthermore, OHRQoL is associated with general health in older adults. Therefore, CS and LEH are important factors to consider when designing both oral healthcare and public health programs.
This was a cross-sectional study based on a survey on 34,564 community-dwelling older adults aged ≥ 60 years in Iwamizawa, a regional city in Hokkaido, northern Japan. This study included older adults who participated in wellness checkups in CHEER Iwamizawa (a research project titled “Checkup to discover HEalth with Energy for senior Residents” in Iwamizawa) in October 2020. The participants of CHEER Iwamizawa were recruited through a public relations magazine published by the city council and flyers posted at major public facilities in the city. In addition, local government employees visited older adults’ social clubs to describe the study’s purpose and recruit participants. The survey content was explained verbally and in writing to the participants, and written informed consent was obtained prior to the survey. This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the Faculty of Dental Medicine, Hokkaido University (approval number: 2020–9).
OHRQoL was evaluated using the Japanese version of the GOHAI46. The GOHAI consists of 12 questions rated on a five-point Likert scale assessing the frequency of oral health-related problems over the past three months. The total score ranges from 12 to 60; the higher the score, the higher the OHRQoL. The median scores, as per the GOHAI national norms for Japanese individuals, are 56.0 and 52.5 for men aged 60 − 69 years and 70 − 79 years, respectively, and 54.0 and 53.0 for women aged 60–69 years and 70 − 79 years, respectively. Therefore, in this study, participants scoring below these cutoff values were defined as the poor OHRQoL group, while the remaining participants were assigned to the good OHRQoL group.
CS and LEH were defined as risk factors for poor OHRQoL, and their presence or absence was examined using self-administered questionnaires. CS was assessed by the question, “Do you feel stressed by the lifestyle changes and restrictions on going out due to the COVID-19 pandemic?” (Yes/To some extent/Not really/No). Participants who answered either yes or to some extent were considered to have CS. LEH was assessed by the question, “Do you perform exercises, such as walking, at least once a week?” (Yes/No). Participants who answered no were considered to lack exercise habits. Then, four mutually exclusive groups (risk of poor OHRQoL) were created based on the presence or absence of both CS and LEH (Group 1: no CS and no LEH; Group 2: no CS and LEH; Group 3: CS and no LEH; Group 4: both CS and LEH).
Data on participants’ age, sex, smoking status, body mass index, and medical history (malignant neoplasm, stroke, myocardial infarction, depression, and osteoarthritis) were collected using a self-administered questionnaire.
IADL was assessed using the JST-IC38. The JST-IC consists of 16 questions with a “Yes/No” response format; the total score ranges from 0 to 16. No specific cutoff value was set; higher scores indicated higher IADL. The internal consistency obtained in the study population and example items of questionnaires are shown in Supplemental Table S4 (available online).
The Japanese version of the Geriatric Depression Scale short form (GDS-15) was used to assess depressive tendencies. The GDS-15 comprises 15 questions in a “Yes/No” response format, with the total score ranging from 0 to 15. In the present study, a total score of ≥ 6 indicated the presence of depressive tendencies47. The internal consistency obtained in the study population and example items of questionnaires are shown in Supplemental Table S4 (available online).
The number of teeth erupted in the oral cavity was recorded, excluding stump teeth and teeth with severe mobility.
Qualified examiners who received two hours of instruction and training from the authors (K.M. and Y.W.) regarding the appropriate data collection methods for measurements performed oral function measurements. However, interexaminer reliability measures were not obtained. There was no strict calibration of examiners for oral function measurement. However, this potential nondifferential misclassification would probably bias results toward the null hypothesis and not lead to overestimation of the observed associations. Significant robust associations were observed under these circumstances. The oral function was objectively assessed using six of the seven parameters previously described to diagnose oral hypofunction48: oral hygiene, oral moisture, occlusal force, tongue and lip movement, tongue pressure, and masticatory function (excluding swallowing function). Oral hygiene was assessed using the tongue coating index49 to determine the degree of tongue coating by visual inspection. Oral moisture was measured at the center of the tongue dorsum, approximately 10 mm from the apex of the tongue, using an oral moisture checker (Mucus, Life Co., Ltd., Saitama, Japan). Each measurement was taken thrice, and the median value was used. The occlusal force of the entire dentition was measured using a pressure-indicating film (Dental Prescale II, GC Corp, Tokyo, Japan) during three seconds of clenching in the intercuspal position. For denture users, the occlusal force was measured with their dentures in place. Tongue and lip movements were assessed using oral diadochokinesis. Participants were asked to repeat the syllables /pa/, /ta/, and /ka/ for five seconds, and the number of each syllable pronounced per second was counted using an automatic counter (Kenkoukun Handy, Takei Scientific Instruments Co., Ltd., Niigata, Japan). Tongue pressure was measured thrice using a tongue pressure measuring instrument (JMS tongue pressure measuring instrument, JMS Co., Ltd., Hiroshima, Japan), and the maximum value was used. The masticatory function was measured using a masticatory ability testing system (Glucosensor GS-II, GC Corp., Tokyo, Japan).
Using previously established guidelines48, the cutoff values for the above six items were as follows: tongue coating index ≥ 50%; oral moisture < 27.0; occlusal force < 500 N; any of the /pa/, /ta/, or /ka/ syllables repeated < 6 times/second for diadochokinesis; tongue pressure < 30 kPa; and masticatory function < 100 mg/dL. Oral hypofunction was defined when at least three of the six measurements met these criteria.
Sample size calculation was performed using G*Power 3.1.9.750. Assuming a two-tailed Mann–Whitney U test with α = 0.05 and d = 0.50, an estimated 134 participants were required to achieve a power of 0.80.
Descriptive statistics, comparisons between the two groups with and without CS, and comparisons between the two groups with and without LEH were conducted by performing Mann–Whitney U tests for continuous variables and the chi-square test or Fisher’s exact test for categorical variables. The scoring of categorical valuables is shown in Supplemental Table S5 (available online). Comparisons among the four groups of risk factors for poor OHRQoL were made by performing the Kruskal–Wallis test for continuous variables and the chi-square test or Fisher’s exact test for categorical variables. Thereafter, Poisson regression with robust standard errors51 was used to calculate the prevalence ratio for poor OHRQoL of CS alone and LEH alone, respectively. Adjustment factors included sociodemographic characteristics (i.e., age, sex, body mass index, JST-IC), depressive tendencies27, and the number of teeth24. Subsequently, the prevalence ratio for poor OHRQoL regarding the risk factors of poor OHRQoL was calculated. When the study design is similar to the present study, the odds ratio is often obtained by logistic regression analysis. However, in logistic regression analysis, the odds ratio is known to deviate from the true relative risk as the frequency of the outcome increases, overestimating the odds ratio when the risk ratio is greater than 1.0 and underestimating the odds ratio when the risk ratio is less than 1.0. 52. Therefore, in this study, Poisson regression with robust standard errors was used to calculate estimates that approximate the true relative risk. All analyses were performed using SPSS Statistics version 27 (IBM Corp., Armonk, NY, USA), and the significance level (two-tailed) was set at 5%. We followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines.
The data used in this study are available from the corresponding author upon reasonable request.
Nochaiwong, S. et al. Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: A systematic review and meta-analysis. Sci. Rep. 11, 10173. https://doi.org/10.1038/s41598-021-89700-8 (2021).
Article  ADS  CAS  Google Scholar 
Pierce, M. et al. Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population. Lancet Psychiat 7, 883–892. https://doi.org/10.1016/s2215-0366(20)30308-4 (2020).
Article  Google Scholar 
Gagné, T., Schoon, I., McMunn, A. & Sacker, A. Mental distress among young adults in Great Britain: Long-term trends and early changes during the COVID-19 pandemic. Soc. Psychiatry Psychiatr. Epidemiol. 57, 1261–1272. https://doi.org/10.1007/s00127-021-02194-7 (2022).
Article  Google Scholar 
Pfefferbaum, B. & North, C. S. Mental health and the COVID-19 pandemic. N. Engl. J. Med. 383, 510–512. https://doi.org/10.1056/NEJMp2008017 (2020).
Article  CAS  Google Scholar 
Pizarro-Ruiz, J. P. & Ordóñez-Camblor, N. Effects of Covid-19 confinement on the mental health of children and adolescents in Spain. Sci. Rep. 11, 11713. https://doi.org/10.1038/s41598-021-91299-9 (2011).
Article  ADS  CAS  Google Scholar 
Fujita, K. et al. Mental health status of the older adults in Japan during the COVID-19 pandemic. J. Am. Med. Dir. Assoc. 22, 220–221. https://doi.org/10.1016/j.jamda.2020.11.023 (2021).
Article  Google Scholar 
Cannistraci, C. V., Valsecchi, M. G. & Capua, I. Age-sex population adjusted analysis of disease severity in epidemics as a tool to devise public health policies for COVID-19. Sci. Rep. 11, 11787. https://doi.org/10.1038/s41598-021-89615-4 (2021).
Article  ADS  CAS  Google Scholar 
Sischo, L. & Broder, H. L. Oral Health-related quality of life: What, why, how, and future implications. J. Dent. Res. 90, 1264–1270. https://doi.org/10.1177/0022034511399918 (2011).
Article  CAS  Google Scholar 
Tsuchiya, M. et al. High prevalence of toothache among Great East Japan Earthquake survivors living in temporary housing. Community Dent. Oral Epidemiol. 47, 119–126. https://doi.org/10.1111/cdoe.12433 (2019).
Article  Google Scholar 
Kishi, M. et al. Oral Health-related quality of life and related factors among residents in a disaster area of the Great East Japan Earthquake and giant tsunami. Health Qual. Life Outcomes 13, 143. https://doi.org/10.1186/s12955-015-0339-9 (2015).
Article  Google Scholar 
Cerqueira, T., Batista, S. G., de Mello, E. B., DosSantos, M. F. & Tuñas, I. T. C. Impact of the COVID-19 pandemic on stress, sleep, and oral health in university students. Front. Pain Res. (Lausanne) 2, 744264. https://doi.org/10.3389/fpain.2021.744264 (2021).
Article  Google Scholar 
Iwasaki, M. et al. Interruption of regular dental visits during the COVID-19 pandemic due to concerns regarding dental visits was associated with periodontitis in Japanese office workers. J. Periodontal Res. 56, 1091–1098. https://doi.org/10.1111/jre.12923 (2021).
Article  CAS  Google Scholar 
Samuel, S. R. et al. Impact of pain, psychological-distress, SARS-CoV2 fear on adults’ OHRQOL during COVID-19 pandemic. Saudi J. Biol. Sci. 28, 492–494. https://doi.org/10.1016/j.sjbs.2020.10.033 (2021).
Article  CAS  Google Scholar 
Awick, E. A. et al. Effects of a randomized exercise trial on physical activity, psychological distress and quality of life in older adults. Gen. Hosp. Psychiatry. 49, 44–50. https://doi.org/10.1016/j.genhosppsych.2017.06.005 (2017).
Article  Google Scholar 
Goodwin, R. D. Association between physical activity and mental disorders among adults in the United States. Prev. Med. 36, 698–703. https://doi.org/10.1016/S0091-7435(03)00042-2 (2003).
Article  Google Scholar 
Rice, D. et al. Exercise-induced hypoalgesia in pain-free and chronic pain populations: state of the art and future directions. J. Pain. 20, 1249–1266. https://doi.org/10.1016/j.jpain.2019.03.005,Pubmed:30904519 (2019).
Article  Google Scholar 
Yamada, M. et al. Effect of the COVID-19 epidemic on physical activity in community-dwelling older adults in Japan: a cross-sectional online survey. J. Nutr. Health Aging. 24, 948–950. https://doi.org/10.1007/s12603-020-1424-2 (2020).
Article  CAS  Google Scholar 
Makizako, H. et al. Social frailty in community-dwelling older adults as a risk factor for disability. J. Am. Med. Dir. Assoc https://doi.org/10.1016/j.jamda.2015.08.023 (2015).
Article  Google Scholar 
Castrejón-Pérez, R. C., Borges-Yáñez, S. A., Gutiérrez-Robledo, L. M. & Avila-Funes, J. A. Oral health conditions and frailty in Mexican community-dwelling elderly: A cross sectional analysis. BMC Public Health 12, 773. https://doi.org/10.1186/1471-2458-12-773 (2012).
Article  Google Scholar 
Oliveira, L. F. S. et al. Factors associated with oral health-related quality of life of institutionalized elders. Braz Oral Res. 35, e015. https://doi.org/10.1590/1807-3107bor-2021.vol35.0015 (2020).
Article  Google Scholar 
Mitri, R., Fakhoury Sayegh, N. & Boulos, C. Factors associated with oral health-related quality of life among Lebanese community-dwelling elderly. Gerodontology 37, 200–207. https://doi.org/10.1111/ger.12463 (2020).
Article  Google Scholar 
Jensen, P. M., Saunders, R. L., Thierer, T. & Friedman, B. Factors associated with oral health-related quality of life in community-dwelling elderly persons with disabilities. J. Am. Geriatr. Soc. 56, 711–717. https://doi.org/10.1111/j.1532-5415.2008.01631.x (2008).
Article  Google Scholar 
Matsuyama, Y., Aida, J., Takeuchi, K., Koyama, S. & Tabuchi, T. Dental pain and worsened socioeconomic conditions due to the COVID-19 pandemic. J. Dent. Res. 100, 591–598. https://doi.org/10.1177/00220345211005782 (2021).
Article  CAS  Google Scholar 
Ikebe, K. et al. Comparison of GOHAI and OHIP-14 measures in relation to objective values of oral function in elderly Japanese. Community Dent. Oral Epidemiol. 40, 406–414. https://doi.org/10.1111/j.1600-0528.2012.00683.x (2012).
Article  Google Scholar 
Llanos, A. H. et al. Impact of aggressive periodontitis and chronic periodontitis on oral health-related quality of life. Braz. Oral Res. 32, e006. https://doi.org/10.1590/1807-3107bor-2018.vol32.0006 (2018).
Article  Google Scholar 
Bortoluzzi, M. C. et al. Tooth loss, chewing ability and quality of life. Contemp. Clin. Dent. 3, 393–397. https://doi.org/10.4103/0976-237X.107424 (2012).
Article  Google Scholar 
de Andrade, F. B., Lebrão, M. L., Santos, J. L., da Cruz Teixeira, D. S. & de Oliveira Duarte, Y. A. Relationship between oral health-related quality of life, oral health, socioeconomic, and general health factors in elderly Brazilians. J. Am. Geriatr. Soc. 60(1755), 1760 (2012).
Google Scholar 
Iwamizawa city website [in Japanese]. New coronavirus infectious disease status in the city (1st to 10,000th cases in Hokkaido) https://www.city.iwamizawa.hokkaido.jp/soshiki/kenkozukurisuishinka/kenko_iryo_fukushi/1/1/3/3671.html (2022)
Adair, J. The Hawthorne effect: A reconsideration of the methodological artifact. J. Appl. Psychol. 69, 334–345. https://doi.org/10.1037/0021-9010.69.2.334 (1984).
Article  Google Scholar 
Rebar, A. L. et al. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol. Rev. 9, 366–378. https://doi.org/10.1080/17437199.2015.1022901 (2015).
Article  Google Scholar 
Blumenthal, J. A. et al. Effects of exercise training on older patients with major depression. Arch. Intern. Med. 159, 2349–2356. https://doi.org/10.1001/archinte.159.19.2349 (1999).
Article  CAS  Google Scholar 
Asmundson, G. J. et al. Let’s get physical: A contemporary review of the anxiolytic effects of exercise for anxiety and its disorders. Depress. Anxiety. 30, 362–373. https://doi.org/10.1002/da.22043 (2013).
Article  Google Scholar 
Stubbs, B. et al. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: a meta-analysis. Psychiatry Res. 249, 102–108. https://doi.org/10.1016/j.psychres.2016.12.020 (2017).
Article  Google Scholar 
Ejiri, M. et al. Exercise as a coping strategy and its impact on the psychological well-being of Japanese community-dwelling older adults during the COVID-19 pandemic: a longitudinal study. Psychol. Sport Exerc. 57, 102054. https://doi.org/10.1016/j.psychsport.2021.102054 (2021).
Article  Google Scholar 
Murakami, M. et al. Factors related to dissociation between objective and subjective masticatory function in Japanese community-dwelling elderly adults. J. Oral Rehabil. 45, 598–604. https://doi.org/10.1111/joor.12650 (2018).
Article  CAS  Google Scholar 
Ohara, Y. et al. Prevalence and factors associated with xerostomia and hyposalivation among community-dwelling older people in Japan. Gerodontology 33, 20–27. https://doi.org/10.1111/ger.12101 (2016).
Article  Google Scholar 
Ministry of Health, Labour and Welfare. Survey of Dental Diseases: Summary of Results. [in Japanese] https://www.mhlw.go.jp/toukei/list/62-17b.html (2016)
Iwasa, H. et al. Assessing competence at a higher level among older adults: development of the Japan Science and Technology Agency Index of Competence (JST-IC). Aging Clin. Exp. Res. 30, 383–393. https://doi.org/10.1007/s40520-017-0786-8 (2018).
Article  Google Scholar 
Kugimiya, Y. et al. Rate of oral frailty and oral hypofunction in rural community-dwelling older Japanese individuals. Gerodontology 37, 342–352. https://doi.org/10.1111/ger.12468,Pubmed:32141117 (2020).
Article  Google Scholar 
Shimazaki, Y. et al. Oral hypofunction and its association with frailty in community-dwelling older people. Geriatr. Gerontol. Int. 20, 917–926. https://doi.org/10.1111/ggi.14015 (2020).
Article  Google Scholar 
United nations. World Population Aging 2009. https://www.un.org/en/development/desa/publications/world-population-ageing-2009.html (2009)
Zhong, B., Jiang, Z., Xie, W. & Qin, X. Association of Social media use with mental health conditions of nonpatients during the COVID-19 outbreak: insights from a national survey study. J. Med. Internet Res. 22, e23696. https://doi.org/10.2196/23696 (2020).
Article  Google Scholar 
Ahorsu, D. K. et al. The Fear of COVID-19 Scale: development and initial validation. Int. J. Ment. Health Addict., 1–9 (2020). https://doi.org/10.1007/s11469-020-00270-8.
Midorikawa, H. et al. Confirming validity of the Fear of COVID-19 Scale in Japanese with a nationwide large-scale sample. PLoS ONE 16, e0246840. https://doi.org/10.1371/journal.pone.0246840 (2021).
Article  CAS  Google Scholar 
O’Donovan, G., Lee, I. M., Hamer, M. & Stamatakis, E. Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern. Med. 177, 335–342. https://doi.org/10.1001/jamainternmed.2016.8014 (2017).
Article  Google Scholar 
Naito, M., Suzukamo, Y., Nakayama, T., Hamajima, N. & Fukuhara, S. Linguistic adaptation and validation of the general oral health assessment Index (GOHAI) in an elderly Japanese population. J. Public Health Dent. 66, 273–275. https://doi.org/10.1111/j.1752-7325.2006.tb04081.x (2006).
Article  Google Scholar 
Wada, T. et al. Depression in Japanese community-dwelling elderly – prevalence and association with ADL and QOL. Arch. Gerontol. Geriatr. 39, 15–23. https://doi.org/10.1016/j.archger.2003.12.003 (2004).
Article  Google Scholar 
Minakuchi, S. et al. Oral hypofunction in the older population: position paper of the Japanese Society of Gerodontology in 2016. Gerodontology 35, 317–324. https://doi.org/10.1111/ger.12347 (2018).
Article  Google Scholar 
Shimizu, T., Ueda, T. & Sakurai, K. New method for evaluation of tongue-coating status. J. Oral Rehabil. 34, 442–447. https://doi.org/10.1111/j.1365-2842.2007.01733.x (2007).
Article  CAS  Google Scholar 
Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 39, 175–191. https://doi.org/10.3758/BF03193146 (2007).
Article  Google Scholar 
Knol, M. J., Le Cessie, S., Algra, A., Vandenbroucke, J. P. & Groenwold, R. H. Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression. CMAJ 184, 895–899. https://doi.org/10.1503/cmaj.101715 (2012).
Article  Google Scholar 
Zhang, J. & Yu, K. F. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280(19), 1690–1691. https://doi.org/10.1001/jama.280.19.1690 (1998).
Article  CAS  Google Scholar 
Download references
We express our gratitude to the local authorities in Iwamizawa for their support and thank everyone who participated in this study. We would also like to thank the members of the Hokkaido University staff for their cooperation. Finally, we would like to thank Editage (www.editage.com) for English language editing.
This work was supported by the Japan Science and Technology Agency Center of Innovation Program [grant number: JPMJCE1301], Japan Society for the Promotion of Science KAKENHI [grant numbers 20H03873 and 20H03899], and the Ministry of Health, Labour and Welfare’s Health and Labour Sciences Research Grants (20AA2006). The funding sources had no involvement in the study design, the collection, analysis, and interpretation of data, the writing of the report, and the decision to submit the article for publication.
Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-Ku, Sapporo City, Hokkaido, 060-8586, Japan
Kazuhito Miura, Yutaka Watanabe, Haruhisa Baba, Kimiya Ozaki, Takae Matsushita, Miyako Kondoh, Kazutaka Okada & Yutaka Yamazaki
Laboratory of Mathematical Biology, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-Ku, Sapporo City, Hokkaido, 060-0810, Japan
Shinji Nakaoka
Health Innovation and Technology Center, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-Ku, Sapporo City, Hokkaido, 060-0812, Japan
Katsuhiko Ogasawara
Hokkaido University of Education Iwamizawa Campus, 2-34 Midorigaoka, Iwamizawa City, Hokkaido, 068-8642, Japan
Teppei Suzuki
Department of Public Health, Faculty of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-Ku, Sapporo City, Hokkaido, 060-8638, Japan
Hiroshi Saito, Takashi Kimura & Akiko Tamakoshi
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
K.M. contributed to the design, data collection and processing, statistical analysis, interpretation of the data and findings, and writing of the manuscript. Y.W. contributed to the conception, design, data collection, interpretation of the data, and critical revision of the manuscript. H.B., Ki.O., T.M., M.K., Kaz.O., and Y.Y. contributed to the data collection and critical revision of the manuscript. S.N., Kat.O., T.S., H.S., T.K., and A.T. contributed to the conception and critical revision of the manuscript. All authors gave their final approval and agreed to be accountable for all aspects of the work.
Correspondence to Yutaka Watanabe.
The authors declare no competing interests.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and Permissions
Miura, K., Watanabe, Y., Baba, H. et al. COVID-19-related stress, exercise, and oral health-related quality of life among community-dwelling older adults who participated in the CHEER Iwamizawa project, Japan. Sci Rep 12, 20347 (2022). https://doi.org/10.1038/s41598-022-24806-1
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-022-24806-1
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
Advertisement
Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
© 2022 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source